

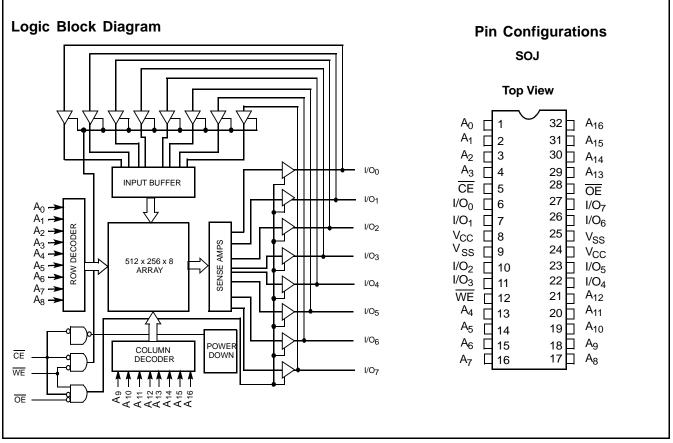
WCFS1008V1C

Features

- High speed
 - —t_{AA} = 12ns
- · CMOS for optimum speed/power
- Center power/ground pinout
- · Automatic power-down when deselected
- · Easy memory expansion with CE and OE options

Functional Description

The WCFS1008V1C is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. This device has an automatic power-down feature that significantly reduces power consumption when deselected.


128K x 8 Static RAM

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins $(I/O_0 \text{ through } I/O_7)$ is then written into the location specified on the address pins $(A_0 \text{ through } A_{16})$.

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE} HIGH), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

The WCFS1008V1C is available in standard 400-mil-wide package.

Selection Guide

	WCFS1008V1C 12ns
Maximum Access Time (ns)	12
Maximum Operating Current (mA)	160
Maximum Standby Current (mA)	5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage on V_{CC} to Relative GND ^[1] –0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State $^{[1]}$ 0.5V to V_{CC} + 0.5V
in High Z State ^[1] –0.5V to V _{CC} + 0.5V
DC Input Voltage ^[1] 0.5V to V _{CC} + 0.5V

Electrical Characteristics Over the Operating Range

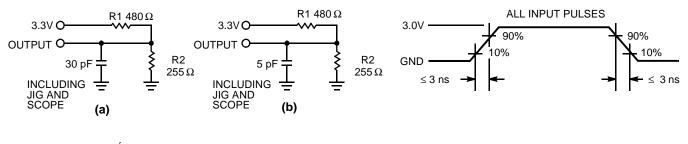
Current into Outputs (LOW)	20 mA
Static Discharge Voltage	.>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	$3.3V\pm10\%$

			WCFS100		
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = - 4.0 mA	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]		-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-1	+1	μA
I _{OZ} Output Leakage Current		$GND \le V_I \le V_{CC},$ Output Disabled	-5	+5	μΑ
Supply Current IOUT		$V_{CC} = Max.,$ $I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$		160	mA
$\label{eq:second} \begin{array}{ c c c } I_{SB1} & \mbox{Automatic CE} & \mbox{Max. } V_{CC}, \end{tabular} \overline{CE} \geq V_{IH} \\ \mbox{Power-Down Current} & \mbox{V}_{IN} \geq V_{IH} \mbox{ or } \\ \mbox{TTL Inputs} & \mbox{V}_{IN} \leq V_{IL}, \end{tabular} f = f_{MAX} \end{array}$		$V_{IN} \ge V_{IH}$ or		20	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\label{eq:max_v_cc} \begin{array}{l} \underline{Max}.\ V_{CC},\\ \overline{CE} \geq V_{CC} - 0.3V,\\ V_{IN} \geq V_{CC} - 0.3V,\\ \text{or } V_{IN} \leq 0.3V, \ f=0 \end{array}$		5	mA

Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Notes:

V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
T_A is the "Instant On" case temperature.
Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT Equivalent to: 167 Ω -O 1.73V OUTPUT O-

Switching Characteristics^[4] Over the Operating Range

		WCFS100	8V1C 12ns	
Parameter	Description	Min.	Max.	Unit
READ CYCLE			1	
t _{RC}	Read Cycle Time	12		ns
t _{AA}	Address to Data Valid		12	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		12	ns
t _{DOE}	OE LOW to Data Valid		6	ns
t _{LZOE}	OE LOW to Low Z	0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		6	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		ns
t _{HZCE} CE HIGH to High Z ^[5, 6]			6	ns
t _{PU} CE LOW to Power-Up		0		ns
t _{PD}	CE HIGH to Power-Down		12	ns
WRITE CYCLE ^[7, 8]			•	
t _{WC}	Write Cycle Time	12		ns
t _{SCE}	CE LOW to Write End	9		ns
t _{AW}	Address Set-Up to Write End	8		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE} WE Pulse Width		8		ns
t _{SD}	Data Set-Up to Write End	6		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		6	ns

Notes:

Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified IoL/IOH and 30-pF load capacitance. 4.

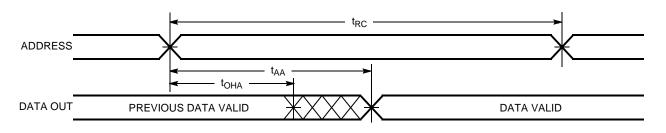
5.

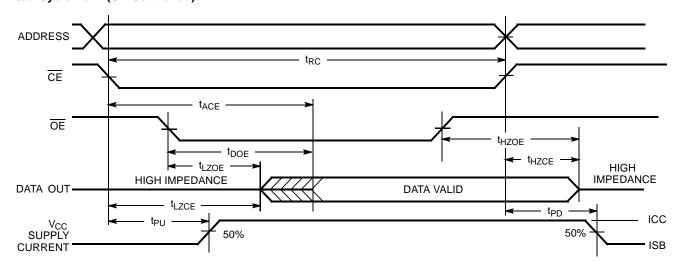
6.

The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} . 7.


8.

Data Retention Characteristics Over the Operating Range


Parameter	Description	Conditions	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention	No input may exceed V_{CC} + 0.5V	2.0		V
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$\frac{V_{CC}}{CE} = V_{DR} = 2.0V,$ $CE \ge V_{CC} - 0.3V,$	0		ns
t _R	Operation Recovery Time	$V_{\rm IN} \ge V_{\rm CC} - 0.3V$ or $V_{\rm IN} \le 0.3V$	200		μs

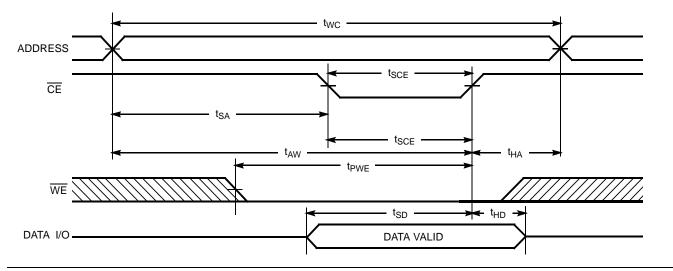

Data Retention Waveform

Switching Waveforms

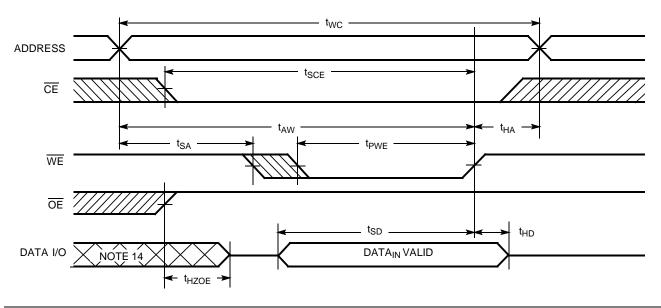
Read Cycle No. 1^[9, 10]

Read Cycle No. 2 (OE Controlled)^[10, 11]

Notes:


WE is HIGH for read cycle.
Address valid prior to or coincident with CE transition LOW.

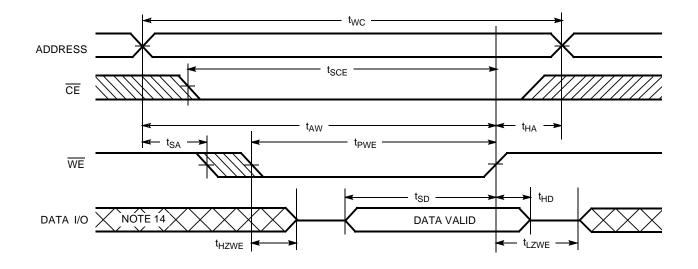
^{9.} Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[12, 13]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)^[12, 13]


Notes:

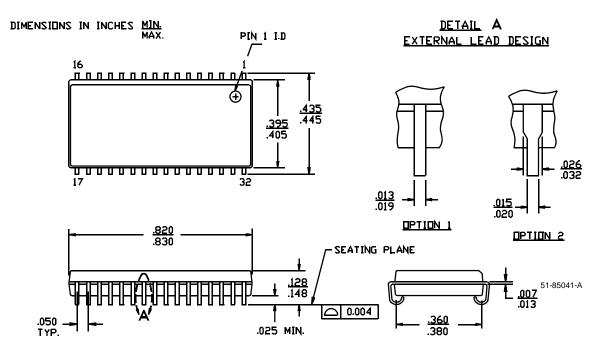
- 12. Data I/O is high impedance if $\overline{OE} = \underline{V}_{IB}$. 13. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. 14. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[13]

Truth Table

CE	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	WCFS1008V1C-JC12	J	32-Lead 300-Mil Molded SOJ	Commercial

Package Diagram

32-Lead (400-Mil) Molded SOJ J

Document Title: WCFS1008V1C 128K x 8 Static RAM			
REV.	Issue Date	Orig. of Change	Description of Change
**	4/15/02	XFL	New Datasheet